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Klee and Laskowski’s O(n log?n) algorithm for finding all minimal area triangles
enclosing a given convex polygon of n vertices is improved to @ (n), which is shown
to be optimal both for finding all minima and for finding just one. * 1986 Academic

Press, Inc.

1. INTRODUCTION

The problems of circumscribing and inscribing convex polygons with,
respectively, minimum and maximum area k-gons have been studied exten-
sively in the recent past because of their applications to robotics and
collision avoidance problems [CY, DAJ]. In particular, Klee and Laskowski
[KL] have given an O(n log*n) algorithm for finding all local minima (with
respect to area) among the triangles that contain a given convex n-gon P.
(A triangle T is a local minimum if there exists some & > 0 such that area
of T’ > area of T for each triangle T’ that is at a Hausdorff distance less
than & from T.) The strength of their paper lies in establishing an elegant
geometric characterization of these minima, which permits the avoidance of
brute-force optimization. They show that although there may be infinitely
many local minima, these fall into at most n equivalence classes, each of
which is a “segment” of triangles having the same area. Their algorithm
computes all the local minima in O(nlog?n) time. Selecting the global
minima from these can then be accomplished in an additional O(n) time.

Klee and Laskowski find each local minimum afresh, without using any
information gleaned from finding previous local minima. Inspired by
Toussaint’s “rotating caliper” algorithms [T], we show that it is possible to
move from one local minimum to the “next” in an orderly fashion,
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achieving a linear-time algorithm.! This is obviously asymptotically optimal
for finding all minima, as there could be as many as n/3 of them (e.g., for
a regular n-gon). We show that it is also optimal for the problem of finding
just one global minimum.

First, we review results from Klee and Laskowski’s paper, and then
present two key lemmas in Section 3 that establish the possibility of moving
from one minima to another quickly. In Section 4 we present some
technical lemmas needed to justify the algorithm, which is described in
Section 5 and proved correct and optimal in Section 6.

2. KLEE AND LASKOWSKI'S RESULTS

Throughout the paper, we will use the following notation. The convex
n-gon to be enclosed is P. The enclosing triangle has sides 4, B, and C,
with vertices «, 8, y opposite these sides; a, b, and ¢ will be points of sides
A, B, and C, or sometimes points of the polygon near those sides. Vertices
of the polygon will be referred to by their indices, which increase clockwise.

We will state three simplified versions of Klee and Laskowski’s geometric
characterizations without proof.

THEOREM 1 (Klee). If T is a local minimum among triangles containing
P, then the midpoint of each side of T touches P.

Klee has established a much stronger version of this theorem, generalized
to arbitrary dimensions and arbitrary convex enclosing bodies [K].

We will say that a triangle side S is flush with an edge e of P (or just
flush with P) if § 2 e. The second characterization we need is implied by a
more precise result from [KL]:

THEOREM 2 (Klee and Laskowski). If T is a local minimum among
triangles containing P, then at least one side of T is flush with P.

We will use the convention throughout the remainder that side C is the
one guaranteed flush by this theorem.

Finally, we introduce Klee and Laskowski’s notion of low and high
(again in simplified form), the key to their algorithm. Let h(p) be the
height of p above the line determined by side C. Then fixing C induces a
partition of the vertices of P into a left chain, consisting of all those vertices
p for which A(p) < h(p + 1), where p + 1 is the next vertex clockwise
from p, and a right chain, consisting of all the remaining vertices. Let a be

!Another linear algorithm has been proposed [DB], but it does not find a minimum in all
cases [O}.
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(a) (b)

Fi16.1. In(a),edge(a — 1, a}is low; (b) edge[a — 1, a]is high.

(the index of) a vertex on the left chain, a — 1 the previous vertex
counterclockwise, A the line flush with the edge [a — 1, a], v, the point on
A such that A(y,) = 2h(p), and finally, for any point a on the left chain,
let b, be the point on the right chain with A(b,) = h(a).

DerFINITION. Edge [a — 1, a] is low if y, b, intersects P above b,, high
if y,_,b,_, intersects P below b,_,, and critical if neither low nor high.

These definitions are illustrated in Fig. 1. Following {KL], we define a
circumscribing triangle to be P-anchored if one edge is flush and the other
two edges touch P at their midpoints; our convention will be that C is the
flush edge. A P-anchored triangle is not necessarily a local minimum, but
every local minimum is P-anchored.

THEOREM 3. [Klee and Laskowski]. In order of increasing height from C,
both the left and right chains consist of a sequence of low edges, followed by at
most two critical edges, followed by a sequence of high edges. For each flush
C, a P-anchored triangle exists. If ABC is a P-anchored with C flush, then
the midpoints of sides A and B either lie on critical edges, or on a vertex
between a low and a high edge.

Klee and Laskowski use the notions of low and high to search for the
critical edges via binary search. Each of log n probes on the left chain
requires log n probes on the right chain to determine high or low status
according to the definition. Thus, for a given C edge, they can zero in on
the midpoints in log?n time, yielding an O(n log?n) algorithm overall.

The next section will show how to eliminate one of the binary searches,
and succeeding sections will eliminate the other.
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Fi1G. 2. A second edge of a P-anchored triangle may be made flush by moving y.

3. Two FLUSH EDGES AND INTERSPERSING

LEMMA 1. For any P-anchored triangle T, there always exists another
equal area P-anchored T’ within the same segment of T (and therefore a
representative of the same equivalence class) that has at least two of its edges
flush with P.

Proof. Let C be the flush edge of T guaranteed by the definition of
P-anchored, as illustrated in Fig. 2. Assume that neither edge 4 nor B is
flush, and let them contact P at vertices a and b. Now move the vertex y of
T leftwards and parallel to C, while maintaining the contacts at a and b. It
is easy to see that the base of the triangle remains the same length, and as
its height does not change either, the area remains fixed throughout the
movement. Move y until either side 4 or B becomes flush with P. This
triangle is 7. Q.E.D.

Our algorithm examines “all” P-anchored triangles by examining the
segment endpoint representatives guaranteed by this lemma.

The key to our algorithm is the following “interspersing” lemma. If x
and y are two points of P, we use the notation (x, y) to indicate the open
chain of points from x clockwise to y, and [x, y] the closed chain.

LEMMA 2. Let T = ABC be a P-anchored triangle flush on side C with a
and b the midpoints of sides A and B, and c the clockwise endpoint of the flush
edge. Let C’ be tangent to P within the chain (¢, a). Then if T’ = A’B'C’ isa
P-anchored triangle flush on C’, with A’ and B’ midpoints a’ and b’, and ¢’
the clockwise endpoint on the flush edge, then b’ € (b, c’) and a’ € (a, b’).

Proof. By the naming convention, the midpoints occur in clockwise
sequence a’, b’, ¢’. Suppose, for the sake of contradiction, that b’ & (b, ¢’)
and/or a’ & (a, b’). Then, we show that A’B’C’ cannot be a P-anchored
triangle by considering the following three cases:
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F1G. 3. Case 2.2 of the interspersing lemma.

Case 1. b’ €[c’, a)]. Then, a’ € (¢, b’) so that a’, b’, and ¢’ all belong
to the left chain determined by C. Thus the angles between C’ and A4’ and
between A’ and B’ are both at least 7 /2 so that A’B’C’ does not even form
a triangle.

Case 2. b’ € [a, b]. Then, we establish the lemma by considering two
subcases:

Case 2.1. The intersection point of B’ and C’, o/, lies on the same side
of B as P. Since a’ € [¢’, b’], the triangle A’B'C" lies entirely to one side of
P, contradicting circumscription.

Case 2.2. o’ lies on the side of B opposite P (see Fig. 3). Since A’B’C’
is a P-anchored triangle, segment a’b’ is parallel to C’. Consequently,
a’ € (a, b’), implying that y’ lies in the interior of the triangle ayb. Now,
since C’ is rotated downwards with respect to C, it is clear that o’ lies
below C. But then we have that both y’ is below y and «’ is below a, which
implies that the midpoint b’ of y’a’ is below the midpoint b of ya. But this
contradicts our assumption that b’ € (a, b).

Case 3. b € (b,c’). Then a’ & (a, b’) (otherwise the lemma is satis-
fied), so a’ € [¢’, a]. Then we have both ¢’ and a’ in [c, a], which is
identical to Case 2, with Case 2 ¢ relabeled as b, and b relabeled as a, and
SO on. Q.E.D.

We can now sketch the operation of a simple O(n log n) algorithm. First,
a single P-anchored triangle is obtained by Klee and Laskowskis’ al-
gorithm, and a second edge is made flush as in Lemma 1. Label these
triangle edges C and A in clockwise order. The algorithm will advance C to
be flush with the next clockwise edge of P, and search for new contact
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F16.4. Edge{a — 1, a]is low by Lemma 3.

points for sides 4 and B. Lemma 2 guarantees that these new contact
points need only be searched for in a clockwise direction. Lemma 1 permits
us to only consider flush contacts for 4. These two immediately yield an
O(nlog n) algorithm as follows. After advancing C, determine whether
[a — 1, a] is low in O(log n) time using Klee and Laskowski’s binary search
procedure. If it is low, then advance a. Repeat until the edge behind a is no
longer low, at which point it is known to be critical or high. Output the
triangle and continue advancing C. This avoids the binary search on the 4
side, but maintains it on the B side. In the next section we will show how to
avoid a binary search on the B side.

4. Low / HIGH DETERMINATION

We present two lemmas establishing sufficient conditions for concluding
that edges are low or high.

LEMMA 3. If h(b) > h(a) and v,b cuts P above or is tangent to b, then
edge [a — 1, a] is low.

Proof. Let S be the subset of P that lies above v, b; see Fig. 4. Since
h(b) > h(a), h(b) > h(b,). Therefore S also lies above y,b,, and so this
line cuts P above b, By the definition of low, edge [@ — 1, a] is low.

Q.E.D.

LEMMA 4. If h(b) > h(a) and y,b cuts P below b, then edge [b — 1, b]
is high.

Proof. Assume that b — 1 is on the right chain; otherwise [b — 1, b] is
high trivially. Consider the line B’ determined by [b — 1, b], and define y;
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F16.5. Edge[b — 1, b]is high by Lemma 4.

to be the point on B’ with h(y;) = 2h(b). Then y; must be to the left of
the line determined by [a — 1, a], since (1) A(d) > h(a), and so h(y;) >
h(y,), and (2) the slope of B’ is lower than that of y,b; see Fig. 5. Now, it
is clear that the line y/a intersects P below a. This implies, by an argument
similar to that used in the preceding lemma, that y.a, intersects P below
a;, where a, is the point on the left chain with h(a,) = h(b). But this is
precisely the definition of what it means for edge [b — 1, b] to be high.

Q.E.D.

The import of these lemmas is that it is sometimes possible to determine
low /high status information for an edge on the left chain withowt examin-
ing vertices at the same height on the right chain, and vice versa, despite the
fact that “low” and “high” are defined in terms of such vertices.

5. THE ALGORITHM

Toussaint’s “rotating caliper” algorithm for finding minimal enclosing
rectangles decides which of the four contact points is the next to advance
clockwise; in general one contact moves and three remain fixed between
one local minimum and the next [T]. Our algorithm does not attempt to
make such a “minimal” movement, but rather advances the C side to be
flush with each edge of the polygon in turn with a for loop, regardless of
whether C is the “next” to touch. The algorithm thus searches for P-
anchored triangles, a superset of the local minima.

With the for loop, vertex pointers a and b are advanced clockwise by
three consecutive while loops. The first advances b until it is on the right
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chain; the advancement of ¢ by the for loop may have redefined the chains
so that b is on the left chain. The second while loop advances a or b
according to circumstances dictated by Lemmas 3 and 4. The third while
takes over when a critical or high edge has been found for the A side; it
advances b until tangency is achieved, and adjusts if side 4 cannot be flush.
Finally, the area of the triangle is computed.

{Notation:
A, B, C are triangle sides.
a, b, c are indices to polygon vertices on sides 4, B, C.
+ 1 advances clockwise; — 1 counterclockwise.
h( p) is the height of point p from the line determined by side C.
Y, is the point on side 4 with 4(y,) = 2h(p).
)

a< 2
b3
forc=1,...,ndo
begin

{Advance b to right chain.}
while /(b + 1) > h(b)do b < b + 1

{Move a if low, and b if high.}
while 2(b) > h(a) do
if v intersects P below b
then b« b +1
elsea—a+1
{[a — 1, a] is now critical or high.}

{Search for the B tangency.}
while y,b intersects P below b and h(b) 2 h(a - 1)do b < b+ 1

if y,b intersects P above b or h(b) < h(a — 1)
then set side B flush with [ — 1, b], and
if midpoint of B < h(a — 1)
then set side 4 to have midpoint a — 1
else side B is determined by v,b
{All three sides are now determined.}

Compute area of ABC.

end

The algorithm has been implemented and tested. An example showing
several iterations is shown in Fig. 6.
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While, 0+
i 2 a

(a) (b)

While, :b+ P-anchored

Whileg: b+

(e) (f)

F1G. 6. Snapshots of the execution of the algorithm, Each panel shows which while loop is
active and the advance decision taken (a + abbreviates a « a + 1). Panels (a)-(d) represent
consecutive iterations of the algorithm. In (d), a P-anchored triangle is found, but it is not a
local minimum since the midpoint of side C (indicated by an arrow) falls outside the flush
edge [¢ — 1, ¢]. Panels (e) and (f) show two later consecutive iterations. The P-anchored
triangle found in (f) is a local minimum because the midpoints touch; this triangle is also the
global minimum for this polygon.

6. CORRECTNESS AND OPTIMALITY

THEOREM 4. The algorithm correctly finds all locally minimal triangles
enclosing an n-gon in ®(n) time.

Proof. Theorem 3 guarantees that a P-anchored triangle exists for each
iteration of the for loop. If a P-anchored triangle is found in one iteration,
Lemma 2 guarantees that we need only search clockwise for the next
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P-anchorage when ¢ advances. Certainly this is true at the first iteration,
when ¢ =1, a =2, and b = 3. Lemma 1 guarantees that we will not miss
any P-anchored triangles by restricting the search to those with both the C
and A sides of the triangle flush. The first while loop is unproblematical, as
b clearly must be on the right chain, and moving b to the vertex of
maximum height cannot move it past a critical edge. (See Fig. 6a.)

The second while loop is the trickiest, but Lemma 3 guarantees that it
only advances a when [a — 1, a] is known to be low, and that it only
advances b when [b — 1, b] is known to be high. Thus this loop cannot
move either a nor b past a critical edge. We now establish that at the end of
this second while loop, the edge [a — 1, a] is not-low.

Define ¢ as the most clockwise point of P with the property that y,¢
supports P at ¢t from above; for a given a, ¢ is the B side tangency. We
claim that, if b is advancéd by the second while loop, the relationship
h(b) = h(t) will thenceforth be maintained by the loop. Whenever the
second loop advances b, ¢ is below b since v,b intersects P below b (and b
is on the right chain), and the advance of b never moves beyond tangency.
(See Figs. 6¢ and d.) Whenever the second loop advances a, ¢t moves only
clockwise. (See, e.g., Figs. 6b and c.) This establishes that ¢ is always equal
or clockwise of b after b’s first advance.

We establish that [a@ — 1, a] is not low at the end of the second while by
contradiction, considering two cases.

Assume first that [@ — 1, a] is low after the loop finishes, and that the
loop has advanced b. Because it has finished, A(d) < h(a) = h(b,); be-
cause [a — 1, a] is low, y,b, cuts P above b,. This implies that y,b cuts P
above b. But then b is below its tangency point f, contradicting the
relationship we showed above: h(b) = h(t).

Second, assume that [a — 1, a] is low after the loop, and that b was not
advanced by the loop. Then either b was moved by the first while, or it has
not been moved at all during this iteration of the for loop. If it was moved
by the first while, then it is at maximum height from C, and it is clearly
impossible for A(a) > h(b) (the exit condition for the second while) and
[a — 1, a] still be low. So it must be that b has never been moved in this
iteration of the ¢ loop. In this case Lemma 2 tells us that the ultimate
resting place for b is clockwise to its current position. But if h(a) > h(b)
and [a — 1, a] is low, then the midpoint of A and therefore B must lie
above a and therefore above b, a contradiction.

Since [a@ — 1, a] is not-low, it must be critical or high. Thus it is justified
to cease advancement of a. We now consider the operation of the third
while loop and the remaining code at the end of the for loop in both the
critical and high cases.

If [a — 1, a] is critical, then since it is not low, y,b, does not cut above,
and, since it is not high, y,_,b,_; does not cut below. This implies that
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there is some b, with h(a — 1) < h(b,) < h(a) such that v, b, is tangent at
b, (this is equivalent to Proposition 2.10 in [KL]). Therefore the third while
will either find b, if it is a vertex of P, or go one vertex beyond it clockwise
if b, lies on the interior of an edge of P. In the later case, the if statement
following sets B flush with [b — 1, b]. In either case, a correct P-anchored
representative is found.

Now consider the case when [a — 1, a] is high. Here it is not possible for
the 4 edge to be flush; rather the 4 edge must touch only at @ — 1, which is
the vertex separating low from high. Since [a@ — 1, a] is high, v,_;b,,
intersects P below b,. Thus the first part of the third while condition will be
true when A(b) = h(a — 1). The loop is therefore exited with h(b) <
h(a — 1), and the following if sets B flush with [b — 1, b], thereby strad-
dling the height of a — 1, and sets 4 so that a — 1 is its midpoint (see Fig.
6f). This is indeed a representative P-anchored triangle in this case.

Finally, the area of the P-anchored triangle ABC is computed. Although
the triangle is not necessarily a local minimum (e.g., the midpoint of C may
not lie on {¢ — 1, c]; see Fig. 6d), no minima will be missed.

It is obvious that the algorithm is linear: it only increments a, b, and ¢,
and therefore completes within 3n = ©(n) steps. Q.ED.

THEOREM 5. §(n) is a lower bound on any algorithm that finds at least
one globally minimal area triangle.

Proof. Suppose there is a sublinear algorithm that finds a global mini-
mum. Consider the operation of this algorithm on a regular convex n-gon
P. P has a global minimum corresponding to each edge flush with C. Since
it is sublinear, there is at least one vertex x that the algorithm never
examines, and which consequently is not chosen as a flush edge in the
output. Modify P to P’ by moving x along a line orthogonal to [x — 1,
x + 1], to x’ within the triangle (x — 1, x, x + 1). Now the algorithm must
output the same answer for P’ as it did for P, since it is “unaware” of the
modification, We claim, however, that P’ has just two global minima, both
involving the modified vertex x as the endpoint of a flush edge.

The situation is illustrated in Fig. 7. aBy is one of the global minima for
P. Rotate side C about x — 1 to become flush with [x — 1, x’], forming the
triangle a/8’y. Our claim is that this triangle has smaller area than afy.
Note that the midpoint ¢ of C falls in the middle of [x — 1, x], since afy
is a minimum and since P is regular. Thus [B, x — 1] is longer than
[x — 1, a]. Thus if we add a segment 8’y parallel to aa’ as illustrated, the
triangles (x — 1, y, 8") and (x — 1, a, @’) are congruent. Therefore the
rotation of C has reduced the triangle area. A symmetrical argument holds
for the flush edge [x’, x + 1).

Therefore, the output of the assumed algorithm on P’ cannot be a global
minimum, and so the assumed sublinear algorithm is incorrect. Q.E.D.
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F16. 7. Modifying x changes the global minimum.

7. DISCUSSION

The presented algorithm is typical of many linear geometric algorithms in
being less than transparent. This obscurity makes it difficult to extend the
method beyond the particular problem considered. Nevertheless, it is possi-
ble that a similar approach may be applicable to the problem of finding
minimal convex k-gons circumscribing an n-gon [CY, DA].
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